

R. Valli Suseela. / International Journal of Engineering and Scientific Research. 1(1), 2014, 25 - 31.

Available online: www.uptodateresearchpublication.com January – June 25

 Research Article ISSN: XXXX – XXXX

AN EFFICIENT RETOUCHED BLOOM FILTER BASED WORD-MATC HING
STAGE OF BLASTN

R. Valli Suseela*1
*1Department of Electronics and Communication Engineering, Rajaas Engineering College, Tamilnadu, India.

.

INTRODUCTION 1

Scanning genomic sequence databases is a common
and often repeated task in molecular biology. The
need for speeding up these searches comes from the
rapid growth of these gene banks: every year their
size is scaled by a factor of 1.5 to 21. The aim of a
scan operation is to find similarities between the
query sequence and a particular genome sequence1,

ABSTRACT
BLAST is one of the most popular sequence analysis tools used by molecular biologists. It is designed to
efficiently find similar regions between two sequences that have biological significance. However, because the
size of genomic databases is growing rapidly, the computation time of BLAST, when performing a complete
genomic database search, is continuously increasing. In this paper, we present a new approach for genomic
sequence database scanning utilizing retouched bloom filter based FPGA architecture. An RBF is an extension
that makes the Bloom filter more flexible by permitting the removal of false positives, at the expense of
introducing false negatives, and that allows a controlled trade-off between the two. We further provide some
simple heuristics that decrease the false positive rate more than the corresponding increase in the false
negative rate, when creating RBFs. The RBF algorithms require space that is at most a small constant multiple
of the Bloom filters vector size. Compared to the creation of a standard Bloom filter, the RBF algorithms also
incur additional processing costs related to key removal. These costs are a constant multiple of a number of RBF
parameters, such as the number of hash functions and the number of false positives to remove. These
heuristics are more effective than the ones we have presented in prior work.

KEY WORDS
Retouched Bloom filter, Genomic sequence and Database search, w-mer scheduler, Hash table with signature
analysis module and FPGA based word matching stage.
.

Author of correspondence:

R. Valli Suseela,
Department of Electronics and Communication
Engineering,
Rajaas Engineering College,
Tamilnadu, India.
Email: r.vallisuseela@gmail.com.

International Journal of Engineering
and

Scientific Research

Journal home page: www.ijesr.info

R. Valli Suseela. / International Journal of Engineering and Scientific Research. 1(1), 2014, 25 - 31.

Available online: www.uptodateresearchpublication.com January – June 26

which might indicate similar functionality from a
biological point of view. Dynamic programming-
based alignment algorithms can guarantee to find all
important similarities. How-ever, as the search
space is the product of the two sequences, which
could be several billion bases in size; it is generally
not feasible to use a direct implementation. One
frequently used approach to speed up this time-
consuming operation is to use heuristics in the
search algorithm. One of the most widely used
sequence analysis tools to use heuristics is the basic
local alignment search tool (BLAST)2. Although
BLAST’s algorithms are highly optimized for
similarity search1 the ever growing databases
outpace the speed improvements that BLAST can
provide on a general purpose PC.
BLASTN, a version of BLAST specifically designed
for DNA sequence searches, consists of a three stage
pipeline.
Stage-1
Word-Matching detect seeds (short exact matches of
a certain length between the query sequence and the
subject sequence), the inputs to this stage are
strings of DNA bases, which typically uses the
alphabet {A, C, G, T}.
Stage-2
Ungapped Extension extends each seed in both
directions allowing substitutions only and outputs
the resulting high-scoring segment pairs (HSPs). An
HSP3 indicates two sequence fragments with equal
length whose alignment2 score meets or exceeds a
empirically set threshold (or cutoff score).
Stage-3
Gapped Extension uses the Smith-Waterman
dynamic programming algorithm to extend the HSPs
allowing insertions and deletions.
The basic idea underlying a BLASTN search is
filtration. Although each stage in the BLASTN
pipeline is becoming more sophisticated, the
exponential increase in the volume of data makes it
important that measures are taken to reduce the
amount of data that needs to be processed. Filtration
discards irrelevant fractions as early as possible, thus
reducing the overall computation time. Analysis of
the various stages of the BLASTN pipeline reveals
that the word-matching stage is the most time-

consuming part. Therefore, accelerating the
computation of this stage will have the greatest
effect on the overall performance. In this paper, we
propose a computationally efficient architecture to
accelerate the data processing of the word- matching
stage based on field programmable gate arrays
(FPGA). FPGAs are suitable candidate platforms
for high-performance computation due to their fine-
grained parallelism and pipelining capabilities.

RELATED WORK
There have been several approaches to accelerate bio
sequence similarity searches. Some of these
approaches use special hardware, while others
attempt to solve this problem in software using
better algorithms or heuristics. Hybrid approaches
employ both the general purpose computer and
specialized hardware. Mega BLAST is used by the
National Center for Biotechnology Information
(NCBI) as a faster alternative to BLASTN4. It
achieves a faster processing speed by sacrificing
substantial sensitivity. BLAST can quickly find
alignments in sequences of high similarity. It
indexes the entire database7 offline before being
used in a search. By eliminating the need to scan the
database, it achieves more than an order of
magnitude speedup comparing to BLASTN.
However, a tradeoff is made between the processing
speed and the sensitivity. Pattern Hunter4 uses a
spaced seed model to achieve faster processing
speed and higher sensitivity; Pattern Hunter II5
implements the optimized multiple seeds scheme to
further increase the sensitivity. The spaced seed
model is designed to gain profits based on the
following constraints: an appropriately chosen model
has a significantly higher probability of having at
least one hit in a homologous region, compared to
BLAST’s consecutive seed model, while having a
lower expected number of hits. If the spaced seed is
not properly designed, there will be too many
random hits to slow the subsequent computation.
However, to find an optimal seed of given weight
and length is NP-hard. FPGAs can provide
outstanding performance on parallel data processing,
which make them a good option for algorithm
acceleration. A small number of designs to speed up

R. Valli Suseela. / International Journal of Engineering and Scientific Research. 1(1), 2014, 25 - 31.

Available online: www.uptodateresearchpublication.com January – June 27

BLAST’s performance on FPGA devices have been
presented. RC-BLAST6 is an early implementation
of BLAST. It first profiles the application to
identify the compute-intensive segments. TUC-
BLAST accelerates DNA searches for small query
sequences (1000 characters) regardless of the
database size7. It achieves a significant performance
improvement compared to the BLAST software, but
its performance for large query sequences is not
clear. Indexes both the query sequence and the
database sequence based on seed of length w.
Afterwards, the neighborhood information to
conduct the extension from off chip Flash memory is
extracted. Although Flash memory can provide a
large space to store the indexed information, its
bandwidth can become the performance bottleneck
when throughput rate is the first priority8. Mercury9
accelerates BLASTN’s word-matching stage
computation by applying parallel Bloom filters. In
addition, the Mercury system also provides an
efficient near-perfect hashing10 strategy to eliminate
false-positive answers. As BLASTN’s word-
matching stage is to detect exact matches between
two sequences, the Bloom filter architecture is a
proper choice to achieve this goal. In this paper, we
also accelerate the word-matching stage
computation using the Bloom filter architecture. Our
approach differs from the Mercury9 approach in that
we apply a partitioned Bloom filter to provide better
computational efficiency, and a bucket hashing14
data structure to ease off-chip hash table accesses.
The Bloom11 filter architecture has been used in a
number of application fields (e.g., pattern matching).
Various Bloom filter architectures have been
proposed to achieve different functionalities.
Dharmapurikar and Lockwood present a
multipattern matching algorithm using multiple
parallel Bloom filters on an FPGA. Each Bloom
filter detects strings of a unique length12. Nourani
and Katta13 combine the Bloom filter and the
parallel hash engines to achieve higher throughput.
The feed forward Bloom filter applies a second bit
array to reduce scan time and memory requirement
for large number of patterns with relatively few
matches.

IMPLEMENTATION PLATFORM
We have chosen the DRC coprocessor system as our
target experiment platform. Acclaim is the third
generation of DRC coprocessors. It is a high-
performance computing system for processing-
intensive applications, consisting of three Hyper
Transport bus and six memory interfaces to the
user’s logic design. Application images are stored in
Flash memory, and are used to configure the FPGA
at power-on (Figure No.1).

WORD-MATCHING ACCELERATOR
ARCHITECTURE
The first stage of BLASTN is used to find “seeds”
or word matches. A word match is a string12 of
fixed length w (referred to as “w-mer”) that occurs
in both the query sequence and the database
sequence. Using the alphabet {A, C, G, T}, NCBI
BLASTN reduces storage and I/O bandwidth by
storing the database using only 2 bits per letter (or
base). The default w-mer length for a nucleotide
search is set to 11. The word-matching stage
implementation of NCBI BLASTN first examines
w-mers on a byte boundary (i.e., 8-mers).
Subsequently, exact 8-mer matches are extended in
both directions to find possible 11-mer matches. If
two matching 11-mers occur in close proximity,
they are likely to generate the same HSPs. NCBI
BLASTN therefore implements a redundancy
eliminator to avoid repetitive inspections on the
same segment in later stages. Our FPGA-based
accelerator design for BLASTN does not follow
exactly the same working mechanism presented in
the NCBI BLASTN software. Instead, we have
chosen FPGA favorable algorithms to achieve the
same functionality. Our word-matching stage
design can be decomposed into three sub stages, as
shown in Figure No.2.
The first sub stage is a parallel Bloom filter; the
second sub stage is a false-positive eliminator to
examine the data passing the parallel Bloom filters,
and the last sub stage eliminates redundant matches.
The sub stage composition is similar to that of
Mercury9, but the detailed architecture is different.

R. Valli Suseela. / International Journal of Engineering and Scientific Research. 1(1), 2014, 25 - 31.

Available online: www.uptodateresearchpublication.com January – June 28

PARALLEL BLOOM FILTER
ARCHITECTURE 14
The word-matching stage aims to find good
alignments containing short exact matches between
a query sequence and a database sequence. Such
matches could be computed using data structures
such as hash tables or suffix trees. An alternative
solution to this filtration problem is to use a Bloom
filter. A Bloom filter is defined by a bit-vector of
length m, denoted as BF [1, …, m]. A family of k
hash functions hi: S → A, 1 ≤ i ≤ k, is associated to
the Bloom filter, where S is the key space and A =
{1 , . . . , m} is the address space. A Bloom filter
is a simple space-efficient randomized hashing10
data structure suitable for quick membership tests on
FPGA implementations.
A Bloom filter works in two steps

1. Programming
For a given I of keys, set n I={x1,…xn}⊆S,
the filter programming process described as
follows. First of all initialize the bit vector m
with zeros for each key xj compute its hash
values hi (x j), 1 ≤ i ≤ k, subsequently set
the bit vector to one according to the k hash
values (i.e., BF[hi (x j)] := 1 for all 1 ≤ i ≤
k).

2. Querying
The querying process of the Bloom
filter works the same as its programming
process. For a given key x, Compute k hash
values hi (x), 1 ≤ i ≤ k. If any of the k bits
BF [hi (x)], 1 ≤ i ≤ k, is zero, then x ∈/ I,
otherwise, x is said to be a member of set I
with a certain probability.
One key feature for the Bloom filter is that
false-positive answers are possible. This is
due to the fact that the hash function could
hash two different keys into the same address
with low probability. The Bloom filter only
produces false-positive results but never
false-negative answers to the query. The
false-positive probability (FPP) of a Bloom
filter is given by,

FPP= (1 - (1- 1/m) kn) k = (1 - e- kn/m) k

 ------------------(1)

In our previous work, we have implemented a 4 × 4
parallel partitioned Bloom filter to test the
computation efficiency introduced by the
partitioned architecture. In this paper, we further
analyze the influences of different architecture
configurations on the partitioned Bloom filter. Based
on the query sequence and database sequence, we
implement an 8 × 2 parallel Bloom filter
architecture, which theoretically doubles the
throughput comparing to the 4 × 4 architecture
under zero-match condition, to gain better
performance. Our design takes advantage of the fact
that mismatches appear far more frequently than
matches in the BLASTN word-matching stage and a
match key has much tighter requirements than
mismatches (once a key fails in any of the k hash
queries, it will be defined as a mismatch, in
contrast, a match key should pass all hash queries).

The computation efficiency will be compromised, if
a single key was sent to all hash functions for
membership testing, especially under low match rate
conditions. Thus, our idea is to divide the k hash
functions into different groups, with each group used
for a different hash query. We apply three
techniques to improve the throughput compared to
the conventional Bloom filter architecture.

a. Partitioning
We first partition the Bloom filter vector into
a number of smaller vectors, which are then
queried by independent hash functions.

b. Pipelining
We further increase the throughput of our
design using a new pipelining technique.

c. Local stalling
We use a local stalling mechanism to
guarantee all w-mers are tested by the Bloom
filter. Our basic building block is a pipelined
partitioned Bloom filter with k/ P hash
functions, denoted as PPBF (k/ P), where P
is the degree of parallelism. In each clock
cycle, it can support k/ P different hash
queries. The hash functions used in the PPBF
block are chosen from the H3 family, which
can be efficiently implemented in hardware
(Figure No.3 and 4). Suppose the input bit
string X with b bits is represented as X = <

R. Valli Suseela. / International Journal of Engineering and Scientific Research. 1(1), 2014, 25 - 31.

Available online: www.uptodateresearchpublication.com January – June 29

x1, x2,..., xb>.We calculate the i -th hash
function over X, hi (X) as

hi (X) = (di1 · x1)⊕ (di2 · x2)⊕· · · ⊕ (dib · xb)
 ---------(2)

MODULES FLOW ARCHITECTURE
A. The rule for the w-mer scheduler

1. If w-mer bufferi is empty, PPBFi can process
data from its nearest w-mer buffer;

2. If only one w-mer is non-empty, all
PPBFs can process data from this buffer;

3. If all w-mer buffers are empty, update all
w-mer buffers simultaneously.

Buffer cond is a control signal that informs the w-
mer scheduler about the empty buffers.
B. False-Positive Eliminator Design
The second substage of our word-matching
accelerator design is false-positive elimination,
which includes two objectives:
1. Find all false-positive matches generated by

the Bloom filter;
2. Get the corresponding position information in

the query sequence for true-positive w-mers.
C. Redundancy Eliminator Design
In order to avoid repeated generation of the same
sequence alignment during the ungapped extension
stage of BLASTN, it uses a redundancy filter to
eliminate w-mers that lead to the same ungapped
extension range. Each w-mer is represented by an
ordered pair (q j, dk), where q j and dk are indices
of the query and database sequence, respectively.
The diagonal of this w-mer is defined as D = q j

−dk. Redundancy matches are eliminated by
examining their diagonals. In NCBI BLASTN, it
also uses the feedback from the ungapped extension
stage to eliminate redundancy matches. We only
eliminate “true overlapping” match w-mers, i.e., if
two consecutive matches share the same diagonal
and they have an overlapping part, we discard the
latter as a redundant match. The non-overlapping
diagonal will be updated, once a non- overlapping
match is found.

PERFORMANCE ANALYSIS
The word-matching stage accelerator has been
implemented using Verilog HDL and integrated
into the DRC coprocessor system. In the DRC
system, a Xilinx Virtex-5 LX330 FPGA chip is
available for the user application. A large volume of
off-chip data can be stored using the DRC system’s
memory, which consists of up to 8 GB of DDR2
SDRAM with a maximum bandwidth 3.2 GB/s and
512 MB of low latency RAM with a maximum
bandwidth of 1.4 GB/s. In each clock cycle, the
parallel Bloom filter10 can receive up to 16 new w-
mers to do the membership examination from local
buffers. The final design consumes about 47% of the
slice registers, 50% of the LUTs, and 85% of the on-
chip memory resource (about 2 Mbits for the m-bit
vector in the Bloom filter design). In order to
quantify the performance improvements of our
word-matching accelerator, we have designed
several tests to simulate possible large-scale DNA
sequence comparisons.

Figure No.1: DRC coprocessor diagram

R. Valli Suseela. / International Journal of Engineering and Scientific Research. 1(1), 2014, 25 - 31.

Available online: www.uptodateresearchpublication.com January – June 30

Figure No.2: Word Matching Stage

Figure No.3: PPBF architecture with k/P hash functions

Figure No.4: Functional Data Flow Diagram

CONCLUSION
In this paper, I have presented an FPGA7-based
reconfigurable architecture8 to accelerate the word-
matching stage of BLASTN, which is a bio-sequence
search tool of high importance to Bioinformatics
research. Our design consists of three sub stages, a
parallel Bloom filter, an off-chip hash table, and a
match redundancy eliminator. Different techniques
are applied to optimize the performance of each sub
stage. The comparison of the performance of our
word-matching accelerator to that of NCBI

BLASTN shows a speedup around one order of
magnitude with only modest resource utilization. As
FPGA-based designs exhibit high performance for
parallel computing and fine-grained pipelining, we
can expect obvious performance improvements of
other applications in Bioinformatics. Therefore, we
are also planning to design architecture for Stage 2
of the BLASTN pipeline (ungapped extension) in
order to further improve the overall application
performance.

R. Valli Suseela. / International Journal of Engineering and Scientific Research. 1(1), 2014, 25 - 31.

Available online: www.uptodateresearchpublication.com January – June 31

ACKNOWLEDGEMENT
I would like to express my sincere and heart full
thanks to my project internal guide Mr. C.
Annapalagan, M.E., Assistant Professor, Head of the
Department of Electronics and Communication
Engineering, for his full support both mentally and
technically by encouraging me during the course of
work.

CONFLICT OF INTEREST
We declare that we have no conflict of interest.

BIBLIOGRAPHY

1. Krishnamurthy P, Buhler J, Chamberlain R,
Franklin M, Gyang K, Jacob and Lancaster J.
“Biosequence similarity search on the
mercury system,” J. VLSI Signal Process.
Syst., 49(1), 2007, 101-121.

2. Zhang Z, Schwartz S, Wanger L and Miller
W. “A greedy algorithm for aligning DNA
sequences,” J. Comput. Biol., 7(1-2), 2000,
203-214.

3. Kent W J. “BLAT–the BLAST-like
alignment tool,” Genome Res., 12, 2002, 656-
664.

4. Ma B, Tromp J and Li M. “Patternhunter:
Faster and more sensitive homology search,”
Bioinformatics, 18(3), 2002, 440-445.

5. Li M, Ma B, Kisman D and Tromp J.
“Patternhunter II: Highly sensitive and fast
homology search,” J. Bioinf. Comput. Biol.,
2(3), 2004, 417-439.

6. Muriki K, Underwood K D and Sass R. “RC-
BLAST: Toward aportable, cost-effective
open source hardware implementation,” in
Proc. 19th Int. Parallel Distrib. Process.
Symp., 8, 2005, 1-8.

7. Sotiriades E, Kozanitis C and Dollas A.
“FPGA based architecture for DNA sequence
comparison and database search,” in Proc.
20th Int. Parallel Distrib. Process. Symp.,
20th, 2006, 8.

8. Lavenier D, Georges G and Liu X. “A
reconfigurable index FLASH memory
tailored to seed-based genomic sequence
comparison algorithms,” JVLSI Signal
Process. Syst., Special Issue Comput. Archit.
Accelerat. Bioinf. Algorithms, 48(3), 2007,
255-269.

9. Buhler J, Lancaster J, Jacob A and
Chamberlain R. “Mercury BLASTN: Faster
DNA sequence comparison using a streaming
architecture”, Roc.Reconfig. Syst. Summer
Inst., 14, 2007, 1-7.

10. Ramakrishna M, Fu E and Bahcekapili E.
“Efficient hardware hashing functions for
high performance computers,” IEEE Trans.
Comput., 46(12), 1997, 1378-1381.

11. Bloom B. “Space/time trade-offs in hash
coding with allowable errors,” Commun.
ACM, 13(7), 1970, 422-426.

12. Dharmapurikar S and Lockwood J. “Fast and
scalable pattern matching for network
intrusion detection systems,” IEEE J. Sel.
Areas Commun., 24(10), 2006, 1781-1792.

13. Nourani M and Katta P. “Bloom filter
accelerator for string matching,” in Proc. 6th
Int. Conf. Comput. Commun. Netw., 6th,
2007, 185-190.

14. Moraru and Andersen D G. “Exact pattern
matching with feed forward Bloom filter,” in
Proc. Workshop Algorithm Eng. Experim.,
2011, 1-12.

Please cite this article in press as: R. Valli Suseela. An Efficient Retouched Bloom Filter Based Word-Matching
Stage of Blastn International Journal of Engineering and Robot Technology, 1(1), 2014, 25 - 31.

