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INTRODUCTION 1 

Scanning genomic sequence databases is a common 
and often repeated task in molecular biology. The 
need for speeding up these searches comes from the 
rapid growth of these gene banks: every year their 
size is scaled by a factor of 1.5 to 21. The aim of a 
scan operation is to find similarities between the 
query sequence and a particular genome sequence1, 
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which might indicate similar functionality from a 
biological point of view. Dynamic programming-
based alignment algorithms can guarantee to find all 
important similarities. How-ever, as the search 
space is the product of the two sequences, which 
could be several billion bases in size; it is generally 
not feasible to use a direct implementation. One 
frequently used approach to speed up this time-
consuming operation is to use heuristics in the 
search algorithm. One of the most widely used 
sequence analysis tools to use heuristics is the basic 
local alignment search tool (BLAST)2. Although 
BLAST’s algorithms are highly optimized for 
similarity search1 the ever growing databases 
outpace the speed improvements that BLAST can 
provide on a general purpose PC. 
BLASTN, a version of BLAST specifically designed 
for DNA sequence searches, consists of a three stage 
pipeline. 
Stage-1 
Word-Matching detect seeds (short exact matches of 
a certain length between the query sequence and the 
subject sequence), the inputs to this stage are 
strings of DNA bases, which typically uses the 
alphabet {A, C, G, T}. 
Stage-2 
Ungapped Extension extends each seed in both 
directions allowing substitutions only and outputs 
the resulting high-scoring segment pairs (HSPs). An 
HSP3 indicates two sequence fragments with equal 
length whose alignment2 score meets or exceeds a 
empirically set threshold (or cutoff score). 
Stage-3 
Gapped Extension uses the Smith-Waterman 
dynamic programming algorithm to extend the HSPs 
allowing insertions and deletions. 
The basic idea underlying a BLASTN search is 
filtration. Although each stage in the BLASTN 
pipeline is becoming more sophisticated, the 
exponential increase in the volume of data makes it 
important that measures are taken to reduce the 
amount of data that needs to be processed. Filtration 
discards irrelevant fractions as early as possible, thus 
reducing the overall computation time. Analysis of 
the various stages of the BLASTN pipeline reveals 
that the word-matching stage is the most time-

consuming part. Therefore, accelerating the 
computation of this stage will have the greatest 
effect on the overall performance. In this paper, we 
propose a computationally efficient architecture to 
accelerate the data processing of the word- matching 
stage based on field programmable gate arrays 
(FPGA). FPGAs are suitable candidate platforms 
for high-performance computation due to their fine-
grained parallelism and pipelining capabilities. 
 
RELATED WORK 
There have been several approaches to accelerate bio 
sequence similarity searches. Some of these 
approaches use special hardware, while others 
attempt to solve this problem in software using 
better algorithms or heuristics. Hybrid approaches 
employ both the general purpose computer and 
specialized hardware. Mega BLAST is used by the 
National Center for Biotechnology Information 
(NCBI) as a faster alternative to BLASTN4. It 
achieves a faster processing speed by sacrificing 
substantial sensitivity. BLAST can quickly find 
alignments in sequences of high similarity. It 
indexes the entire database7 offline before being 
used in a search. By eliminating the need to scan the 
database, it achieves more than an order of 
magnitude speedup comparing to BLASTN. 
However, a tradeoff is made between the processing 
speed and the sensitivity. Pattern Hunter4 uses a 
spaced seed model to achieve faster processing 
speed and higher sensitivity; Pattern Hunter II5 
implements the optimized multiple seeds scheme to 
further increase the sensitivity. The  spaced  seed  
model  is designed to gain profits based on the 
following constraints: an appropriately chosen model 
has a significantly higher probability of having at 
least one hit in a homologous region, compared to 
BLAST’s consecutive seed model, while  having a 
lower expected number of hits. If the spaced seed is 
not properly designed, there will be too many 
random hits to slow the subsequent computation.  
However, to find an optimal seed of given weight 
and length is NP-hard. FPGAs can provide 
outstanding performance on parallel data processing, 
which make them a good option for algorithm 
acceleration. A small number of designs to speed up 
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BLAST’s performance on FPGA devices have been 
presented. RC-BLAST6 is an early implementation 
of BLAST. It first profiles the application to 
identify the compute-intensive segments. TUC- 
BLAST accelerates DNA searches for small query 
sequences (1000 characters) regardless of the 
database size7. It achieves a significant performance 
improvement compared to the BLAST software, but 
its performance for large query sequences is not 
clear. Indexes both the query sequence and the 
database sequence based on seed of length w. 
Afterwards, the neighborhood information to 
conduct the extension from off chip Flash memory is 
extracted. Although Flash memory can provide a 
large space to store the indexed information, its 
bandwidth can become the performance bottleneck 
when throughput rate is the first priority8. Mercury9 
accelerates BLASTN’s word-matching stage 
computation by applying parallel Bloom filters. In 
addition, the Mercury system also provides an 
efficient near-perfect hashing10 strategy to eliminate 
false-positive answers. As BLASTN’s word- 
matching stage is to detect exact matches between 
two sequences, the Bloom filter architecture is a 
proper choice to achieve this goal. In this paper, we 
also accelerate the word-matching stage 
computation using the Bloom filter architecture. Our 
approach differs from the Mercury9 approach in that 
we apply a partitioned Bloom filter to provide better 
computational efficiency, and a bucket hashing14 
data structure to ease off-chip hash table accesses. 
The Bloom11 filter architecture has been used in a 
number of application fields (e.g., pattern matching). 
Various Bloom filter architectures have been 
proposed to achieve different functionalities. 
Dharmapurikar and Lockwood present a 
multipattern matching algorithm using multiple 
parallel Bloom filters on an FPGA. Each Bloom 
filter detects strings of a unique length12. Nourani 
and Katta13 combine the Bloom filter and the 
parallel hash engines to achieve higher throughput. 
The feed forward Bloom filter applies a second bit 
array to reduce scan time and memory requirement 
for large number of patterns with relatively few 
matches.  
 

IMPLEMENTATION PLATFORM  
We have chosen the DRC coprocessor system as our 
target experiment platform. Acclaim is the third 
generation of DRC coprocessors. It is a high-
performance computing system for processing-
intensive applications, consisting of three Hyper 
Transport bus and six memory interfaces to the 
user’s logic design. Application images are stored in 
Flash memory, and are used to configure the FPGA 
at power-on (Figure No.1). 
 
WORD-MATCHING ACCELERATOR 
ARCHITECTURE 
The first stage of BLASTN is used to find “seeds” 
or word matches. A word match is a string12 of 
fixed length w (referred to as “w-mer”) that occurs 
in both the query sequence and the database 
sequence. Using the alphabet {A, C, G, T}, NCBI 
BLASTN reduces storage and I/O bandwidth by 
storing the database using only 2 bits per letter (or 
base). The default w-mer length for a nucleotide 
search is set to 11. The word-matching stage 
implementation of NCBI BLASTN first examines 
w-mers on a byte boundary (i.e., 8-mers). 
Subsequently, exact 8-mer matches are extended in 
both directions to find possible 11-mer matches. If 
two matching 11-mers occur in close proximity, 
they are likely to generate the same HSPs. NCBI 
BLASTN therefore implements a redundancy 
eliminator to avoid repetitive inspections on the 
same segment in later stages. Our FPGA-based 
accelerator design for BLASTN does not follow 
exactly the same working mechanism presented in 
the NCBI BLASTN software. Instead, we have 
chosen FPGA favorable algorithms to achieve the 
same functionality. Our word-matching stage 
design can be decomposed into three sub stages, as 
shown in Figure No.2.  
The first sub stage is a parallel Bloom filter; the 
second sub stage is a false-positive eliminator to 
examine the data passing the parallel Bloom filters, 
and the last sub stage eliminates redundant matches. 
The sub stage composition is similar to that of 
Mercury9, but the detailed architecture is different. 
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PARALLEL BLOOM FILTER 
ARCHITECTURE 14 
The word-matching stage aims to find good 
alignments containing short exact matches between 
a query sequence and a database sequence. Such 
matches could be computed using data structures 
such as hash tables or suffix trees. An alternative 
solution to this filtration problem is to use a Bloom 
filter. A Bloom filter is defined by a bit-vector of 
length m, denoted as BF [1, …, m]. A family of k 
hash functions hi: S → A, 1 ≤ i ≤ k, is associated to 
the Bloom filter, where S is the key space and A = 
{1 , . . . , m} is the address space. A Bloom filter 
is a simple space-efficient randomized hashing10 
data structure suitable for quick membership tests on 
FPGA implementations. 
A Bloom filter works in two steps 

1. Programming 
For a given I of keys, set n I={x1,…xn}⊆S, 
the filter programming process described as 
follows. First of all initialize the bit vector m 
with zeros for each key xj compute its hash 
values hi (x j ), 1 ≤ i ≤ k, subsequently set 
the bit vector to one according to the k hash 
values (i.e., BF[hi (x j )] := 1 for all 1 ≤ i ≤ 
k). 

2. Querying 
The querying process   of   the   Bloom   
filter works the same as its programming 
process. For a given key x, Compute k hash 
values hi (x ), 1 ≤ i ≤ k. If any of the k bits 
BF [hi (x)], 1 ≤ i ≤ k, is zero, then x ∈/ I, 
otherwise, x is said to be a member of set I 
with a certain probability. 
One key feature for the Bloom filter is that 
false-positive answers are possible. This is 
due to the fact that the hash function could 
hash two different keys into the same address 
with low probability. The Bloom filter only 
produces false-positive results but never 
false-negative answers to the query. The 
false-positive probability (FPP) of a Bloom 
filter is given by, 

FPP= ( 1 - (1- 1/m) kn ) k = (1 - e- kn/m) k    

                                                                                              ------------------(1) 

In our previous work, we have implemented a 4 × 4 
parallel partitioned Bloom filter to test the 
computation efficiency introduced by the 
partitioned architecture. In this paper, we further 
analyze the influences of different architecture 
configurations on the partitioned Bloom filter. Based 
on the query sequence and database sequence, we 
implement an 8 × 2 parallel Bloom filter 
architecture, which theoretically doubles the 
throughput comparing to the 4 × 4 architecture 
under zero-match condition, to gain better 
performance. Our design takes advantage of the fact 
that mismatches appear far more frequently than 
matches in the BLASTN word-matching stage and a 
match key has much tighter requirements than 
mismatches (once a key fails in any of the k hash 
queries, it will be defined as a mismatch, in 
contrast, a match key should pass all hash queries). 

The computation efficiency will be compromised, if 
a single key was sent to all hash functions for 
membership testing, especially under low match rate 
conditions. Thus, our idea is to divide the k hash 
functions into different groups, with each group used 
for a different hash query. We apply three 
techniques to improve the throughput compared to 
the conventional Bloom filter architecture. 

a. Partitioning  
We first partition the Bloom filter vector into 
a number of smaller vectors, which are then 
queried by independent hash functions. 

b. Pipelining 
We further increase the throughput of our 
design using a new pipelining technique. 

c. Local stalling 
We use a local stalling mechanism to 
guarantee all w-mers are tested by the Bloom 
filter. Our basic building block is a pipelined 
partitioned Bloom filter with k/ P hash 
functions, denoted as PPBF (k/ P), where P 
is the degree of parallelism. In each clock 
cycle, it can support k/ P different hash 
queries. The hash functions used in the PPBF 
block are chosen from the H3 family, which 
can be efficiently implemented in hardware 
(Figure No.3 and 4). Suppose the input bit 
string X with b bits is represented as X = < 
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x1, x2,..., xb>.We calculate the i -th hash 
function over X, hi (X) as 

hi ( X ) = (di1 · x1)⊕ (di2 · x2)⊕· · · ⊕ (dib · xb) 
                                                                   ---------(2) 

MODULES FLOW ARCHITECTURE  
A. The rule for the w-mer scheduler 

1. If w-mer bufferi is empty, PPBFi can process 
data from its nearest w-mer buffer; 

2. If only one w-mer is non-empty, all 
PPBFs can process data from this buffer; 

3. If all w-mer buffers are empty, update all 
w-mer buffers simultaneously. 

Buffer cond is a control signal that informs the w-
mer scheduler about the empty buffers. 
B. False-Positive Eliminator Design 
The second substage of our word-matching 
accelerator design is false-positive elimination, 
which includes two objectives: 
1. Find all false-positive matches generated by 

the Bloom filter; 
2. Get the corresponding position information in 

the query sequence for true-positive w-mers. 
C. Redundancy Eliminator Design 
In order to avoid repeated generation of the same 
sequence alignment during the ungapped extension 
stage of BLASTN, it uses a redundancy filter to 
eliminate w-mers that lead to the same ungapped 
extension range.  Each w-mer is represented by an 
ordered pair (q j, dk), where q j and dk are indices 
of the query and database sequence, respectively. 
The diagonal of this w-mer is defined as D = q j 

−dk. Redundancy matches are eliminated by 
examining their diagonals. In NCBI BLASTN, it 
also uses the feedback from the ungapped extension 
stage to eliminate redundancy matches. We only 
eliminate “true overlapping” match w-mers, i.e., if 
two consecutive matches share the same diagonal 
and they have an overlapping part, we discard the 
latter as a redundant match. The non-overlapping 
diagonal will be updated, once a non- overlapping 
match is found.  
 
PERFORMANCE ANALYSIS 
The word-matching stage accelerator has been 
implemented using Verilog HDL and integrated 
into the DRC coprocessor system. In the DRC 
system, a Xilinx Virtex-5 LX330 FPGA chip is 
available for the user application. A large volume of 
off-chip data can be stored using the DRC system’s 
memory, which consists of up to 8 GB of DDR2 
SDRAM with a maximum bandwidth 3.2 GB/s and 
512 MB of low latency RAM with a maximum 
bandwidth of 1.4 GB/s. In each clock cycle, the 
parallel Bloom filter10 can receive up to 16 new w-
mers to do the membership examination from local 
buffers. The final design consumes about 47% of the 
slice registers, 50% of the LUTs, and 85% of the on-
chip memory resource (about 2 Mbits for the m-bit 
vector in the Bloom filter design). In order to 
quantify the performance improvements of our 
word-matching accelerator, we have designed 
several tests to simulate possible large-scale DNA 
sequence comparisons. 

 
Figure No.1: DRC coprocessor diagram 
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Figure No.2: Word Matching Stage 

 

Figure No.3: PPBF architecture with k/P hash functions 

 
Figure No.4: Functional Data Flow Diagram 

CONCLUSION 
In this paper, I have presented an FPGA7-based 
reconfigurable architecture8 to accelerate the word-
matching stage of BLASTN, which is a bio-sequence 
search tool of high importance to Bioinformatics 
research. Our design consists of three sub stages, a 
parallel Bloom filter, an off-chip hash table, and a 
match redundancy eliminator. Different techniques 
are applied to optimize the performance of each sub 
stage. The comparison of the performance of our 
word-matching accelerator to that of NCBI 

BLASTN shows a speedup around one order of 
magnitude with only modest resource utilization. As 
FPGA-based designs exhibit high performance for 
parallel computing and fine-grained pipelining, we 
can expect obvious performance improvements of 
other applications in Bioinformatics. Therefore, we 
are also planning to design architecture for Stage 2 
of the BLASTN pipeline (ungapped extension) in 
order to further improve the overall application 
performance. 
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